Eclipse lunar durante el solsticio

22 12 2010

Diciembre 17, 2010: Todo el mundo sabe que “la Luna cuando brilla sobre la nieve recién caída da un lustroso acabado de mediodía a los objetos que se encuentran debajo”.

Esto es así, excepto durante un eclipse lunar.

Arriba: Un eclipse lunar similar ocurrido en noviembre de 2003. Crédito de la fotografía: Jim Fakatselis

El acabado lustroso sólo se producirá a medias el próximo 21 de diciembre, el primer día del invierno para el hemisferio boreal, cuando la Luna pase, casi perfectamente centrada, a través de la sombra de la Tierra. Durante los 72 minutos que durará la espectral totalidad, una luz ámbar bailará sobre las nieves de América del Norte, sumergiendo así a los paisajes en un inusual estado de rojiza oscuridad.

El eclipse se inicia durante la madrugada del martes 21 de diciembre, a la 01:33 am, Hora oficial del Este (lunes 20 de diciembre a las 10:33 pm, Hora oficial del Pacífico). En ese momento, la sombra de la Tierra parecerá una mordedura de un color rojo oscuro en el borde del disco lunar. Tomará alrededor de una hora para que esa “mordedura” se expanda y se trague a la Luna entera. La totalidad comienza a las 02:41 am, Hora oficial del Este (11:41 pm, Hora oficial del Pacífico) y durará 72 minutos.

Si usted sólo planea salir un instante para echar un rápido vistazo —es un mes muy frío para quienes viven en el hemisferio norte— escoja este momento: las 03:17 am, Hora oficial del Este (17 minutos pasada la medianoche, Hora oficial del Pacífico). Eso será cuando la Luna esté en la sombra más profunda, mostrando de ese modo los más fantásticos tonos de rojo cobrizo.

Arriba: De principio a fin, el eclipse favorecerá a los observadores situados en América del Norte. El evento podrá ser apreciado en su totalidad en todo el continente. Haga clic aquí para descargar información completa sobre la visibilidad del eclipse en todo el mundo (en idioma inglés). Crédito: F. Espenak, NASA/GSFC

¿Y por qué roja?

Un rápido viaje a la Luna proporciona la respuesta. Imagínese de pie en una polvorienta planicie lunar, mirando hacia el cielo. Por encima de su cabeza está la Tierra, suspendida en el firmamento, con su lado nocturno hacia abajo y escondiendo completamente al Sol detrás de ella. El eclipse está en progreso. Se podría esperar que la Tierra se vea completamente oscura, pero de hecho no lo está. ¡El borde del planeta parece estar incendiándose! Al recorrer con la vista la circunferencia de la Tierra, se observan todos los amaneceres y atardeceres en el mundo, todos al mismo tiempo. Esta increíble luz se esparce a través del corazón de la sombra de la Tierra, llenándola de esta manera con un cobrizo resplandor y transformando a la Luna en una gran orbe rojiza.

Volviendo a la Tierra, la oscurecida Luna pintará los paisajes recién nevados con colores inusuales; quizás no tenga tanto lustre, pero sí mucha belleza.

¡Disfrute del espectáculo!

Artículo cedido por.    Noticias Ciencia de la NASA

El Directorio de Ciencias del Centro Marshall para Vuelos Espaciales de la NASA patrocina el Portal de Internet de Science@NASA que incluye a Ciencia@NASA. La misión de Ciencia@NASA es ayudar al público a entender cuán emocionantes son las investigaciones que se realizan en la NASA y colaborar con los científicos en su labor de difusión.

Anuncios




Erupciones masivas sacuden al Sol

17 12 2010

Diciembre 13, 2010: El 1 de agosto de 2010, un hemisferio entero del Sol hizo erupción. Filamentos de magnetismo se desprendieron y explotaron, ondas de choque se desplazaron a toda velocidad por la superficie estelar y nubes de gas caliente de miles de millones de toneladas fueron expulsadas hacia el espacio. Los astrónomos sabían que acababan de presenciar algo importante.

Fue un suceso tan importante que quizás haya hecho pedazos varias ideas antiguas sobre la actividad solar.

“El evento del 1 de agosto en verdad nos abrió los ojos”, dice Karel Schrijver, quien trabaja en el Laboratorio Astrofísico y Solar de la empresa Lockheed Martin, en Palo Alto, California. “Vemos ahora que las tormentas solares pueden ser eventos globales, que se desarrollan a escalas que antes no podíamos imaginar”.

Schrijver ha estado trabajando por los últimos tres meses con el físico solar, y colega en Lockheed Martin, Alan Title, con el fin de entender lo que ocurrió durante la “Gran Erupción”. Tenían muchos datos para analizar. El evento fue registrado con un nivel de detalle sin precedentes por el Observatorio de Dinámica Solar (Solar Dynamics Observatory o SDO, en idioma inglés) y por las naves espaciales gemelas STEREO (sigla en idioma inglés de Observatorio de Relaciones Solares – Terrestres), de la NASA. Con varios de sus colegas presentes para ofrecer comentarios, delinearon sus hallazgos hoy en una conferencia de prensa que tuvo lugar en el marco de la reunión de la Unión Geofísica Estadounidense, en San Francisco.

Las explosiones solares no son eventos aislados y localizados, anunciaron. La actividad solar está interconectada por medio del magnetismo a lo largo de distancias asombrosas. Fenómenos como las erupciones solares, los tsunamis y las eyecciones de masa coronal pueden ocurrir todos al mismo tiempo, incluso separados por cientos de miles de kilómetros, conformando un concierto caótico de complejidad abrumadora.

Las naves espaciales gemelas STEREO, de la NASA, alrededor del Sol.

“Ya no es suficiente enfocarnos en los campos magnéticos de regiones activas aisladas si queremos predecir erupciones solares”, dice Title, “ahora debemos conocer el campo magnético superficial de prácticamente todo el Sol“.

Esta revelación incrementa la carga de trabajo de quienes pronostican el tiempo en el espacio, pero también aumenta la potencial precisión de sus predicciones.

“La estrategia de estudiar globalmente el Sol podría traer grandes avances en la predicción de la actividad solar”, comenta Rodney Viereck, quien trabaja en el Centro para la Predicción del Tiempo en el Espacio, en Boulder, Colorado, el cual pertenece a la Administración Nacional Océanica y Atmosférica (National Oceanic and Atmospheric Administration o NOAA, por su sigla en idioma inglés). “Esto, a su vez, permitirá brindar mejores pronósticos a nuestros clientes, como por ejemplo a los operadores de redes eléctricas o aerolíneas comerciales, quienes podrían actuar de forma pertinente para proteger sus sistemas y afianzar la seguridad de los pasajeros y de la tripulación”.

En un artículo que prepararon para la Revista de Investigación Geofísica (Journal of Geophysical Research o JGR, por su sigla en idioma inglés), Schrijver y Title identificaron más de una docena de significativas ondas de choque, llamaradas, erupciones de filamentos y eyecciones de masa coronal, que abarcan 180 grados de longitud solar y 28 horas de tiempo. Al principio, parecía que se trataba de un conjunto de estrépitos; pero eso fue solamente hasta que confeccionaron gráficos de los eventos en un mapa del campo magnético solar.

Title describe este momento, que es digno de un ¡Eureka!: “Vimos que todos los eventos de actividad solar sustancial estaban conectados entre sí por medio de un extenso sistema de capas separatrices, separadoras y cuasi–separadoras”. Una capa “separatriz” es una zona magnética parecida a una falla geológica, donde pequeños cambios en las corrientes de plasma circundantes pueden disparar grandes tormentas electromagnéticas.

Las zonas donde ocurrieron los eventos más importantes están indicadas en esta imagen del Sol capturada en el ultravioleta extremo. Dicha imagen fue obtenida por el Observatorio de Dinámica Solar durante la Gran Erupción del 1 de agosto. Las líneas blancas trazan el campo magnético solar. Crédito de la imagen: K. Schrijver & A. Title

Durante mucho tiempo, los investigadores han sospechado que este tipo de conexión magnética era posible. “La noción de que podría haber erupciones solares ‘solidarias’ tiene al menos tres cuartos de siglo”, escribieron en su artículo para la JGR. En algunas ocasiones, los observadores veían erupciones solares que estallaban una después de la otra —como si fueran palomitas de maíz—, pero era imposible demostrar que existía un vínculo entre ellas. Los argumentos que apoyaban la idea de causa y efecto eran estadísticos y muchas veces dudosos.

“El SDO y las naves espaciales gemelas STEREO han revolucionado esta clase de trabajo”, dice Lika Guhathakurta, quien es investigadora del programa Viviendo con una Estrella, de la NASA. “Las tres naves espaciales, en conjunto, monitorizan el 97% de la superficie del Sol, permitiendo de este modo a los investigadores ver conexiones que eran muy difíciles de percibir en el pasado”.

Concepto artístico del Observatorio de Dinámica Solar (SDO, por su sigla en idioma inglés).

Como prueba de ello, aunque solamente dos terceras partes del evento que tuvo lugar en el mes de agosto fueron visibles desde la Tierra, éste fue registrado en su totalidad por la flota SDO–STEREO. Además, las mediciones del campo magnético solar que fueron llevadas a cabo por el SDO revelaron conexiones directas entre los varios componentes de la Gran Erupción, y esta vez no fueron necesarias las estadísticas.

Queda mucho trabajo por hacer. “Estamos aún separando las causas de los efectos”, dice Schrijver. “¿Fue el evento una gran reacción en cadena, en la cual una erupción desataría otra —bang, bang, bang— en secuencia? ¿O todo ocurrió de forma simultánea, como consecuencia de algún cambio a mayor escala en el campo magnético del Sol?”

Es posible que el análisis futuro revele el detonador subyacente. Por ahora, el equipo está todavía acostumbrándose a la idea del carácter global de la actividad solar. Un comentarista recordó la vieja historia de los tres hombres ciegos que describen un elefante: uno toca su trompa, otro sostiene su cola y el tercero le huele una uña. Estudiar el Sol mirando una mancha solar a la vez puede ser tan limitante como lo ocurrido en esa historia.

“No quiere decir que todas las erupciones serán globales”, destaca Guhathakurta. “Pero el carácter global de la actividad solar ya no puede ser ignorado”.

Como si el Sol no fuese ya lo suficientemente grande …

Artículo cedido por.    Noticias Ciencia de la NASA

El Directorio de Ciencias del Centro Marshall para Vuelos Espaciales de la NASA patrocina el Portal de Internet de Science@NASA que incluye a Ciencia@NASA. La misión de Ciencia@NASA es ayudar al público a entender cuán emocionantes son las investigaciones que se realizan en la NASA y colaborar con los científicos en su labor de difusión.





La lluvia de meteoros Gemínidas desafía cualquier explicación

15 12 2010

Diciembre 6, 2010: La lluvia de meteoros Gemínidas, que este año alcanzará su máxima actividad el 13 y 14 de diciembre, es la lluvia de meteoros más intensa del año. Se prolonga por varios días, produce abundantes bolas de fuego y puede ser vista casi desde cualquier lugar de la Tierra.

Una bola de fuego de las Gemínidas estalla sobre el Desierto de Mojave en 2009. Crédito de la fotografía: Wally Pacholka / AstroPics.com / TWAN.

de la NASA, aunque esto no tiene relación con ninguna de las razones mencionadas arriba.

“Las Gemínidas son mis favoritas”, cuenta, “porque desafían cualquier explicación”.

La mayoría de las lluvias de meteoros provienen de los cometas, los cuales dejan detrás suyo una abundante cantidad de meteoroides que luego se manifiestan como una noche de “estrellas fugaces”. Sin embargo, las Gemínidas son distintas. Lo que les da origen no es un cometa, sino un extraño objeto rocoso llamado 3200 Faetón (Phaethon, en idioma inglés), el cual esparce una cantidad de escombros polvorientos demasiado pequeña como para explicar las Gemínidas.

“De todos los torrentes de escombros a través de los cuales pasa la Tierra anualmente, el de las Gemínidas es por mucho el más masivo”, dice Cooke. “Si sumamos todo el polvo del torrente de las Gemínidas, fácilmente sobrepasa la masa de otros torrentes por factores que van desde 5 hasta 500 veces”.

Esto convierte a las Gemínidas en el peso pesado de las lluvias de meteoros. En comparación, 3200 Faetón es más bien un peso pluma.

3200 Faetón fue descubierto en 1983 por el satélite IRAS (Infrared Astronomical Satellite o Satélite Astronómico Infrarrojo, en idioma español), de la NASA, y fue rápidamente clasificado como un asteroide. ¿Qué otra cosa podría ser? No tenía cola, su órbita se cruzaba con el cinturón principal de asteroides y sus colores eran muy parecidos a los de otros asteroides. De hecho, 3200 Faetón es tan parecido al asteroide Pallas, ubicado en el cinturón principal de asteroides, que bien podría ser un pedazo de 5 km que se desprendió de Pallas, el cual mide 544 km.

Concepto artístico de un impacto sobre Pallas. Crédito de la imagen: B. E. Schmidt y S. C. Radcliffe, de UCLA

Si 3200 Faetón se desprendió del asteroide Pallas, como creen algunos investigadores, entonces los meteoroides de las Gemínidas podrían ser escombros que fueron dejados atrás por el evento de desprendimiento”, especula Cooke. “Sin embargo, eso no concuerda con otras cosas que sabemos”.

Los investigadores han observado muy cuidadosamente las órbitas de los meteoroides Gemínidas y han arribado a la conclusión de que fueron eyectados por 3200 Faetón cuando éste se encontraba cerca del Sol, no cuando fue desprendido de Pallas, en el cinturón de asteroides. La órbita excéntrica de 3200 Faetón lo lleva muy adentro de la órbita de Mercurio cada 1,4 años. Por ello, el cuerpo rocoso recibe una ráfaga de radiación solar que podría causar que chorros de polvo se evaporaran y se integraran al torrente de las Gemínidas.

¿Podría ser esta la respuesta?

Para poner a prueba la hipótesis, los investigadores utilizaron las naves espaciales gemelas STEREO (Solar Terrestrial Relations Observatory u Observatorio de las Relaciones Terrestres y Solares, en idioma español), de la NASA, las cuales están diseñadas para estudiar la actividad solar. Los coronógrafos ubicados a bordo de STEREO pueden detectar asteroides y cometas que pasan muy cerca del Sol y, en junio de 2009, detectaron a 3200 Faetón a una distancia de tan sólo 15 diámetros solares de la superficie del Sol.

La trayectoria de 3200 Faetón indicada en la cámara HI–1A del coronógrafo localizado a bordo de STEREO. Los destellos azules y verdes (en colores falsos) provienen del Sol.

Lo que ocurrió entonces sorprendió a los científicos planetarios de la UCLA (Universidad de California en Los Ángeles, en idioma español) David Jewitt y Jing Li, quienes analizaron los datos. “El brillo de 3200 Faetón de pronto aumentó al doble”, escribieron. “La explicación más plausible es que Faetón haya eyectado polvo, quizás como consecuencia de un resquebrajamiento de la roca en la superficie (a través del agrietamiento de minerales hidratados, ocasionado por la fractura y la descomposición térmica) ante el intenso calor del Sol”.

La hipótesis del “cometa rocoso” de Jewitt y Li es atractiva. Sin embargo, ellos indican que tiene un problema: la cantidad de polvo eyectada por 3200 Faetón en su encuentro solar de 2009 agregó un mero 0,01% a la masa del torrente de las Gemínidas, lo cual no es ni remotamente suficiente para mantener reabastecido al torrente por mucho tiempo. ¿Quizás el cometa rocoso era más activo en el pasado?

“Simplemente no sabemos”, dice Cooke. “Cada cosa nueva que aprendemos sobre las Gemínidas parece profundizar el misterio”.

La Tierra pasará este mes a través del torrente de escombros de las Gemínidas y producirá hasta 120 meteoros por hora en aquellos sitios donde el cielo esté oscuro. El mejor momento para observarlos es probablemente entre la media noche local y el amanecer del martes 14 de diciembre, cuando la Luna esté baja y la constelación Géminis se encuentre cerca del cénit, proyectando así brillantes Gemínidas a través del cielo estrellado.

Abríguese bien (si se encuentra en el hemisferio boreal), vaya afuera y saboree el misterio.

Artículo cedido por.    Noticias Ciencia de la NASA

El Directorio de Ciencias del Centro Marshall para Vuelos Espaciales de la NASA patrocina el Portal de Internet de Science@NASA que incluye a Ciencia@NASA. La misión de Ciencia@NASA es ayudar al público a entender cuán emocionantes son las investigaciones que se realizan en la NASA y colaborar con los científicos en su labor de difusión.





El descubrimiento de un “bicho de arsénico” expande la definición de la vida

10 12 2010

Diciembre 2, 2010: Con el apoyo de la NASA, un grupo de investigadores ha descubierto el primer microorganismo terrestre capaz de desarrollarse y reproducirse utilizando arsénico, un elemento químico muy tóxico. El microorganismo, que vive en el Lago Mono, California, sustituye al fósforo por arsénico para construir su ADN y otros componentes celulares.

Imagen microscópica del GFAJ-1 creciendo en arsénico

“La definición de la vida acaba de expandirse”, dijo Ed Weiler, administrador asociado de la NASA para el Directorio de Misiones Científicas, en las oficinas centrales de la agencia, ubicadas en Washington. “Conforme avanzamos en nuestros esfuerzos por encontrar signos de vida en el sistema solar, tenemos que ampliar nuestro pensamiento, hacerlo más diverso y considerar que puede existir vida de una manera diferente a la que conocemos”.

El hallazgo de una composición bioquímica alternativa alterará los libros de texto de biología y expandirá el alcance de la búsqueda de vida fuera del planeta Tierra. La investigación será publicada en la edición de esta semana de la revista Science Express.

Carbono, hidrógeno, nitrógeno, oxígeno, fósforo y azufre son las seis piezas básicas de todas las formas de vida conocidas en la Tierra. El fósforo es parte de la columna vertebral química del ADN y del ARN, las estructuras que transportan las instrucciones genéticas para la vida, y es considerado un elemento esencial para todas las células vivas.

El fósforo es un componente esencial de la molécula que transporta la energía en todas las células (el adenosín trifosfato) y también de los fosfolípidos que conforman todas las membranas celulares. El arsénico, aunque es químicamente similar al fósforo, es venenoso para la mayoría de los seres vivos en la Tierra. El arsénico destruye los senderos del metabolismo porque, químicamente, se comporta de manera similar al fosfato.

“Sabemos que algunos microbios pueden respirar arsénico, pero lo que encontramos es un microbio que hace algo completamente distinto: construye partes de sí mismo con el arsénico”, dijo Felisa Wolfe-Simon, una becaria de Investigación en Astrobiología para la NASA, en el Centro de Estudios Geológicos de Estados Unidos (U.S. Geological Survey, en idioma inglés), en Menlo Park, California, y quien dirigió al equipo que llevó a cabo la investigación. “Si algo aquí en la Tierra puede hacer algo tan inesperado, ¿qué más puede hacer la vida que aún no hemos visto?”

El área de las investigaciones en el Lago Mono, en California central.

El microbio recién descubierto, la cepa GFAJ-1, es miembro de un grupo común de bacterias, las Gammaproteobacterias. En el laboratorio, los investigadores lograron exitosamente que los microbios del lago crecieran con una dieta muy baja en fósforo y muy generosa en arsénico. Cuando los investigadores quitaron el fósforo y lo reemplazaron con arsénico, los microbios continuaron creciendo. Análisis posteriores indicaron que el arsénico estaba siendo usado para producir los componentes básicos de las nuevas células de GFAJ-1.

El punto crucial que los científicos investigaron consistió en saber, para el microbio que creció en el arsénico, cuándo fue el arsénico incorporado en la maquinaria bioquímica vital del organismo, como lo es el ADN, las proteínas y las membranas celulares. Una variedad de técnicas sofisticadas de laboratorio fueron usadas para determinar dónde fue incorporado el arsénico.

El equipo escogió explorar el Lago Mono debido a su química inusual, especialmente su alta salinidad, su alta alcalinidad y sus altos niveles de arsénico. Esta química es, en parte, una consecuencia del aislamiento del Lago Mono de sus fuentes de agua dulce durante un período de 50 años.

La geomicrobióloga Felisa Wolfe-Simon está recolectando sedimentos del fondo de las aguas poco profundas del Lago Mono, en California. Crédito: Henry Bortman,

Los resultados de este estudio aportarán información valiosa a investigaciones en muchas áreas, incluyendo el estudio de la evolución de la Tierra, la química orgánica, los ciclos bioquímicos, la lucha contra las enfermedades y la investigación de la Tierra como sistema. Estos hallazgos también abren nuevas fronteras en el campo de la microbiología y de otras áreas del conocimiento.

“La idea de bioquímicas alternativas para la vida es común en la ciencia ficción”, dijo Carl Pilcher, quien es el director del Instituto de Astrobiología de la NASA (NASA Astrobiology Institute, en idioma inglés), en el Centro de Investigaciones Ames (Ames Research Center, en idioma inglés), ubicado en Moffet Field, California. “Hasta ahora, una forma de vida que usa el arsénico como bloque fundamental era solamente teoría, pero ahora sabemos que un tipo de vida como ese existe en el Lago Mono”.

El equipo de investigación incluye a científicos del Centro de Estudios Geológicos de Estados Unidos, de la Universidad Estatal de Arizona (Arizona State University, en idioma inglés), localizado en Tempe, Arizona, del Laboratorio Nacional Lawrence Livermore (Lawrence Livermore National Laboratory, en idioma inglés), ubicado en Livermore, California, de la Universidad Duquesne (Duquesne University, en idioma inglés), en Pittsburgh, Pennsilvannia, y de la Fuente de Radiación Sincrotrónica de Stanford (Standford Synchroton Radiation LightSource, en idioma inglés), en Menlo Park, California.

El Programa de Astrobiología de la NASA (NASA Astrobiology Program, en idioma inglés), en Washington, contribuyó con fondos para las investigaciones a través de su Programa de Exobiología y Biología Evolutiva (Exobiology and Evolutionary Biology, en idioma inglés), así como del Instituto de Astrobiología (Institute for Astrobiology, en idioma inglés), de la NASA. El Programa de Astrobiología de la NASA apoya investigaciones sobre el origen, la evolución, la distribución y el futuro de la vida en la Tierra.

Artículo cedido por.    Noticias Ciencia de la NASA

El Directorio de Ciencias del Centro Marshall para Vuelos Espaciales de la NASA patrocina el Portal de Internet de Science@NASA que incluye a Ciencia@NASA. La misión de Ciencia@NASA es ayudar al público a entender cuán emocionantes son las investigaciones que se realizan en la NASA y colaborar con los científicos en su labor de difusión.





El Sol roba cometas a otras estrellas

9 12 2010

Noviembre 23, 2010: La próxima vez que se emocione al ver un cometa centelleando en el cielo nocturno, considere lo siguiente: lo que está experimentando es un placer robado. Usted está disfrutando del espectáculo a expensas de una estrella distante.

Un cúmulo de estrellas en formación en la Nebulosa de Orión. Según la investigación realizada por Hal Levison, estas estrellas podrían estar intercambiando cometas entre sí

El delito ha quedado expuesto mediante sofisticadas simulaciones por computadora llevadas a cabo por investigadores del Instituto de Investigaciones del Suroeste (Southwest Research Institute o SWRI, en idioma inglés).

“Si los resultados son correctos, nuestro Sol podría estar atrapando cometas que se encuentran en el ‘patio trasero’ de las estrellas vecinas”, dice Hal Levison, quien es un científico que trabaja para el SWRI. Además, él cree que este robo es el responsable de la presencia de la mayoría de los cometas que se encuentran en la nube de Oort, en los límites de nuestro sistema solar.

“Sabemos que las estrellas se forman en cúmulos. El Sol nació dentro de una enorme comunidad de otras estrellas que se formaron en la misma nube de gas. En ese cúmulo a partir del cual se originaron, las estrellas estaban lo suficientemente cerca unas de otras como para jalar cometas hacia ellas por vía gravitacional. Es como si fueran niños de un vecindario que juegan mutuamente en sus patios. Es difícil imaginarse que no suceda algo como esto”.

Según este modelo de “robo”, los cometas acompañaban a la estrella más cercana cuando el cúmulo de origen se disolvió. El Sol se quedó con un botín bastante importante —la nube de Oort, la cual estaba repleta de cometas que pertenecían a todo el “vecindario”.

La nube de Oort es una inmensa nube de cometas que orbitan al Sol más allá de la órbita de Plutón. Lleva el nombre del astrónomo holandés Jan Oort, quien a mediados del siglo veinte propuso que esta nube podría ser una explicación al origen de los cometas que a veces visitan el sistema solar interior. Aunque no se han hecho observaciones directas que confirmen la existencia de la nube de Oort, la mayoría de los astrónomos creen que es la fuente de todos los cometas de período largo o de clase similar al cometa Halley.

Concepto artístico de la nube de Oort. Obsérvese que la escala de distancias es logarítmica. Comparada con el tamaño de las órbitas planetarias, la nube de Oort se encuentra muy alejada. De hecho, el tamaño estimado de la nube de Oort, 10^5 unidades astronómicas, es aproximadamente 1 año luz. Si el Sol pasara a dos años luz de una estrella similar, las nubes de Oort de las estrellas se superpondrían y sus cometas se mezclarían. Crédito de la imagen: ESO

El modelo estándar de producción cometaria indica que nuestro Sol obtuvo estos cometas de forma honrada.

“Ese modelo propone que los cometas son residuos de la formación de planetas de nuestro propio sistema solar y que nuestros planetas fueron los responsables de impulsarlos gravitacionalmente hacia enormes distancias, poblando así la nube. Sin embargo, creemos que este tipo de escenario ocurrió en todos los sistemas solares antes de que el cúmulo de origen se dispersara”.

De otra forma, dice Levison, los números no se corresponden con las observaciones.

“El modelo estándar de ningún modo puede producir la cantidad de cometas que vemos [cayendo desde la nube de Oort]. Las estrellas hermanas del Sol tienen que haber contribuido con algunos cometas para la mezcla”.

Los cometas de la nube de Oort miden generalmente alrededor de 2 ó 3 kilómetros (1 ó 2 millas), y están tan lejos que estimar su cantidad no es una tarea fácil. Pero Levison y su equipo dicen que, basándose en las observaciones, debería haber alrededor de 400 mil millones de cometas allí afuera. El modelo “doméstico” de formación cometaria puede explicar solamente una población de 6 mil mllones.

¿Podría este cometa, ahora una super–estrella cometaria, haber sido robado de otro sistema estelar? Nadie lo sabe. Lea más sobre el cometa Hartley 2

“Esa sería una nube de Oort bastante anémica, y una gigantesca discrepancia —demasiado grande como para ser explicada por errores en los cálculos. No es posible que nos equivoquemos por tanto, de modo que tiene que haber algo mal en el modelo mismo”.

Él menciona la órbitas cometarias como evidencia.

“Estos cometas se encuentran en órbitas muy peculiares —órbitas altamente excéntricas, de período largo, que los llevan muy lejos de nuestro Sol, a regiones remotas del espacio. De modo que no pudieron haberse formado en órbita alrededor del Sol. Tienen que haberse originado cerca de otras estrellas y haber sido secuestrados y transportados hasta aquí”.

Esto quiere decir que los cometas nos pueden decir mucho no solamente sobre la historia temprana del Sol, sino también sobre la historia de otras estrellas.

“Podemos estudiar las órbitas de los cometas y poner su química en el contexto de dónde y alrededor de qué estrella se formaron. Es intrigante pensar que algunas de las cosas que tenemos provienen de otras estrellas. Somos ‘parientes'”.

Artículo cedido por.    Noticias Ciencia de la NASA

El Directorio de Ciencias del Centro Marshall para Vuelos Espaciales de la NASA patrocina el Portal de Internet de Science@NASA que incluye a Ciencia@NASA. La misión de Ciencia@NASA es ayudar al público a entender cuán emocionantes son las investigaciones que se realizan en la NASA y colaborar con los científicos en su labor de difusión.





Una tormenta de nieve envuelve al cometa Hartley 2

9 12 2010

Noviembre 18, 2010: La NASA acaba de emitir una recomendación para los viajeros espaciales: Cuidado con el cometa Hartley 2, porque está experimentando el embate de una gran tormenta invernal de nieve.

La sonda Deep Impact (Impacto Profundo, en idioma español) fotografió la inesperada tempestad cuando sobrevolaba el núcleo del cometa, el pasado 4 de noviembre, a una distancia de apenas 700 km (435 millas). Al principio, los investigadores solamente notaron los chorros de gas hiperactivos del cometa. El núcleo helado está repleto de ellos, cada uno expele vistosamente dióxido de carbono desde docenas de sitios. Sin embargo, una mirada más detallada reveló una maravilla aún más grande. El espacio alrededor del núcleo del cometa refulge mediante trozos de hielo y de nieve, algunos de ellos posiblemente son más grandes que una pelota de baloncesto.

Esta imagen de alto contraste del cometa Hartley 2, obtenida durante el sobrevuelo de la sonda Deep Impact, el pasado 4 de noviembre, revela una nube de partículas heladas que rodean al núcleo activo del cometa

“No habíamos visto antes nada como esto”, dice el profesor Mike A’Hearn, investigador principal de la misión EPOXI del proyecto Deep Impact, en la Universidad de Maryland. “Realmente nos tomó por sorpresa”.

Antes del sobrevuelo de Hartley 2, naves espaciales internacionales visitaron otros cuatro núcleos de cometas: Halley, Borrelly, Wild 2 y Tempel 1. Ninguno de ellos estaba envuelto por “nieve de cometa”. Es particularmente interesante el caso del cometa Tempel 1, porque la propia sonda Deep Impact realizó el sobrevuelo. Utilizó las mismas cámaras de alta resolución y alto rango dinámico que grabaron los trozos de nieve que se arremolinaban en torno a Hartley 2, pero no detectó nada similar en Tempel 1.

“Esto es, genuinamente, un nuevo fenómeno”, dice Jessica Sunshine, de la Universidad de Maryland, quien es miembro del equipo científico. “El cometa Hartley 2 no es como otros cometas que hemos visitado antes”.

La “tormenta de nieve” ocupa un volumen casi esférico, centrado en el núcleo giratorio de Hartley 2. El núcleo, con forma de pesa de gimnasio, mide apenas 2 kilómetros de un extremo a otro, pero es pequeño comparado con el enjambre de partículas que lo rodea. “La nube de hielo mide unas cuantas decenas de kilómetros de ancho —y posiblemente sea mucho más grande que eso”, dice A’Hearn. “Aún no sabemos con seguridad cuán grande es”.

Los datos recolectados por el espectrógrafo infrarrojo, localizado a bordo de la sonda Deep Impact, muestran sin dejar dudas que las partículas están hechas de H2O congelado, es decir, de hielo común. Los trozos están formados por granos de hielo que miden micras y que se encuentran pegados unos con otros de forma poco firme, dando lugar a cúmulos que miden desde unos cuantos centímetros hasta unos cuantos decímetros de ancho.

Esta gráfica compara el espectro infrarrojo de las partículas que rodean al cometa Hartley 2 (cruces negras) con el espectro de granos de hielo de agua pura medido en un laboratorio (líneas de color púrpura). Los granos de escala de micras proporcionan la mejor coincidencia. Esto significa que las bolas de nieve que se observan en el cometa Hartley 2 están hechas de pequeños trocitos de H20.

“Si sostuvieses uno de ellos en la palma de tu mano, lo aplastarías fácilmente”, dice Sunshine. “Estas bolas de nieve cometarias son muy frágiles, similares en densidad y esponjosidad a la nieve de las altas montañas en la Tierra”.

Pero incluso una bola de nieve esponjosa puede causar problemas, sin embargo, si te golpea a una velocidad de 12 km/s (27.000 millas por hora). A esa velocidad pasó la sonda Deep Impact junto al núcleo del cometa durante el sobrevuelo. Si uno de los trozos de hielo de Hartley 2 hubiese golpeado la nave, la hubiera dañado y la hubiese hecho alejarse dando tumbos, dejándola incapaz de apuntar sus antenas hacia la Tierra para transmitir datos o pedir ayuda. Los encargados del control de la misión posiblemente nunca hubiesen sabido qué sucedió.

“Afortunadamente, estábamos lejos de la zona de peligro”, destaca A’Hearn. “La nube de nieve no parece extenderse hasta nuestra distancia de encuentro de 700 kilómetros. La luz solar sublima los trozos de hielo antes de que puedan alejarse demasiado del núcleo”.

La fuente de la nieve del cometa podrían ser los mismos chorros estridentes que llamaron la atención en un principio.

El proceso comienza con hielo seco en la corteza del cometa. El hielo seco es CO2 en estado sólido, una de las sustancias más abundantes en el cometa Hartley 2. Cuando el calor del Sol alcanza un depósito de hielo seco, ¡puf!, instantáneamente se transforma y pasa de estado sólido a vapor, formando de este modo un chorro en cualquier punto donde la topografía sea capaz de colimar el gas que escapa a gran velocidad. Aparentemente, estos chorros de CO2 son los que llevan consigo trozos nevosos de hielo de agua.

Concepto artístico del cometa Hartley 2, que muestra cómo chorros de CO2 arrastran consigo trozos de hielo de agua del núcleo, produciendo de esta manera una 'tormenta de nieve cometaria'.

Debido a que la nieve está impulsada por los chorros, “nieva desde abajo hacia arriba y no al revés”, destaca Peter Schultz, de la Universidad de Brown, quien también es miembro del equipo de investigación.

Irónicamente, sobrevolar al cometa Hartley 2 podría ser incluso más peligroso que posarse sobre él. Los trozos de hielo salen desde la superficie del cometa a velocidades de apenas unos cuantos m/s (5 a 10 mph). Una sonda que iguale su velocidad con la del núcleo del cometa en preparación para posarse sobre él no estaría en peligro alguno con las bolas de nieve errantes; pero a la altísima velocidad del sobrevuelo la situación sería muy distinta. Esto es algo que quienes planeen futuras misiones a cometas activos como el Hartley 2 seguramente tomarán en cuenta.

Las tormentas de nieve de los cometas podrían ser apenas el primero de muchos descubrimientos por venir. A’Hearn y Sunshine dicen que el equipo de investigación apenas está comenzando a analizar los muchos gigabytes de datos enviados por la sonda desde el encuentro, así que se pueden esperar nuevos resultados en semanas o meses.

Manténgase en contacto para recibir más noticias sobre el cometa Hartley 2.

Artículo cedido por.    Noticias Ciencia de la NASA

El Directorio de Ciencias del Centro Marshall para Vuelos Espaciales de la NASA patrocina el Portal de Internet de Science@NASA que incluye a Ciencia@NASA. La misión de Ciencia@NASA es ayudar al público a entender cuán emocionantes son las investigaciones que se realizan en la NASA y colaborar con los científicos en su labor de difusión.