El humo que dejan los meteoros provoca extrañas nubes

28 08 2012

7 de agosto de 2012: Cualquiera que alguna vez haya visto una nube noctilucente (Noctilucent Cloud o "NLC", por su sigla en idioma inglés) estaría de acuerdo: parecen extraterrestres. Las ondas de color azul eléctrico y los pálidos mechones de NLCs que cruzan el cielo nocturno se parecen a algo de otro mundo.

Los investigadores dicen que esa no es una idea tan remota. Un componente clave para las misteriosas nubes proviene del espacio exterior.

"En las nubes noctilucentes, hemos detectado partículas de ‘humo de meteoros’ (el humo que dejan los meteoros al desintegrarse en la atmósfera)", informa James Russell, de la Universidad Hampton. Russell es el investigador principal de la misión AIM (Aeronomy of Ice in the Mesosphere, en idioma inglés, o Aeronomía del Hielo en la Mesósfera, en idioma español), de la NASA, que estudia el fenómeno. "Este descubrimiento avala la teoría que establece que el polvo de los meteoros es el agente que sirve de núcleo y es aquel alrededor del cual se forman las NLC".

Meteor Smoke (splash)

Un nuevo video de ScienceCast explica cómo el "humo de los meteoros" origina las nubes noctilucentes. Reproducir el video (en idioma inglés)

Las nubes noctilucentes son un misterio que data de fines del siglo XIX. Los observadores del cielo, en el Norte, las detectaron por primera vez en 1885, casi dos años después de la erupción del volcán Krakatoa. La ceniza del volcán de Indonesia provocó puestas de Sol tan espléndidas que la observación del cielo nocturno se convirtió en un pasatiempo en todo el mundo. Un observador en particular, un alemán de nombre T. W. Backhouse, a quien con frecuencia se le adjudica el descubrimiento de las NLC, notó algo raro. Él se quedó afuera de su casa durante más tiempo que la mayoría de las personas, lo suficiente como para que el crepúsculo se oscureciera por completo y, algunas noches, vio tenues filamentos que emanaban un color azul eléctrico, con el negro del cielo de fondo. Los científicos de esa época pensaron que era algún tipo de manifestación del polvo volcánico.

Meteor Smoke (signup)

Finalmente, la ceniza del volcán Krakatoa se disipó y las puestas de Sol perdieron intensidad, pero extrañamente las nubes noctilucentes no desaparecieron. Todavía están presentes en la actualidad, con más intensidad que nunca. Los investigadores no están seguros de qué papel desempeñó la ceniza del Krakatoa en esas primeras observaciones. Pero hay una cosa que es clara: el polvo detrás de las nubes que vemos ahora es polvo espacial.

Mark Hervig, de la compañía GATS, Inc., dirigió el equipo que halló la conexión extraterrestre.

"Utilizando a SOFIE (Solar Occultation for Ice Experiment, en idioma inglés u Ocultamiento Solar para Experimentos con Hielo, en idioma español), de la misión AIM, descubrimos que aproximadamente el 3% de cada cristal de hielo en una nube noctilucente es meteorítico", dice Hervig.

El sistema solar interno está plagado de meteoroides de todas las formas y tamaños (desde trozos de roca del tamaño de un asteroide hasta motas de polvo microscópico). Todos los días, la Tierra recoge toneladas del material, principalmente del de menor tamaño. Cuando los meteoroides golpean nuestra atmósfera y se queman, dejan detrás una bruma compuesta de pequeñas partículas suspendidas, a una altura de 70 a 100 kilómetros sobre la superficie de la Tierra. No es coincidencia alguna que las NLC se formen a 83 kilómetros de altura, directamente dentro de la zona de humo de los meteoros.

Meteor Smoke (iss, 558px)

Astronautas a bordo de la Estación Espacial Internacional (EEI, por su sigla en idioma español) tomaron esta fotografía de nubes noctilucentes cerca de la parte superior de la atmósfera de la Tierra, el 13 de julio de 2012. Imagen ampliada

Las motas de polvo de meteoros actúan como puntos de convergencia, donde las moléculas de agua se pueden ensamblar hasta convertirse en cristales de hielo. El proceso se denomina "nucleación".

La nucleación tiene lugar todo el tiempo en la parte más baja de la atmósfera. En las nubes comunes, las motas de polvo que se encuentran en el aire e incluso los microbios vivientes pueden servir como sitios de nucleación. Pequeños cristales de hielo, gotas de agua y copos de nieve se acumulan alrededor de estas partículas y caen hacia la Tierra, siempre y cuando se tornen lo suficientemente pesados como para poder hacerlo.

Los agentes nucleantes son especialmente importantes en el reino etéreo de las NLC. Las nubes se forman en el límite del espacio donde la presión del aire es apenas más elevada que en el vacío. Las posibilidades de que dos moléculas de agua se encuentren son escasas, y de que se unan son más remotas todavía.

El humo de los meteoros ayuda a superar todos los pronósticos. Según los datos proporcionados por la misión AIM, los cristales de hielo pueden acumularse alrededor del polvo de los meteoros hasta alcanzar tamaños que van desde los 20 hasta los 70 nanómetros. A modo de comparación, las nubes cirro, en la parte inferior de la atmósfera, donde el agua es abundante, contienen cristales que son de 10 a 100 veces más grandes.

El pequeño tamaño de los cristales de hielo explica el color azul de las nubes. Las pequeñas partículas tienden a dispersar longitudes de onda corta de luz (azul) de manera más fuerte que las longitudes de onda larga (rojo). En consecuencia, cuando un rayo de luz de Sol golpea una NLC, el color azul es el que se dispersa hacia la Tierra.

El humo de los meteoros explica mucho sobre las NLC pero todavía falta develar un misterio clave: ¿Por qué las nubes se están tornando más brillantes y se están dispersando?

En el siglo XIX, las NLC estaban confinadas a los sitios en latitudes altas, como Canadá y Escandinavia. Sin embargo, más recientemente, han sido observadas en lugares ubicados tan al Sur como Colorado, Utah y Nebraska. Según Russell, la razón es el cambio climático. Uno de los gases de invernadero que se ha tornado más abundante en la atmósfera de la Tierra desde el siglo XIX es el metano. Proviene de basureros, de sistemas de gas natural y petróleo, de las actividades agrícolas y de las minas de carbón.

Resulta que el metano estimula a las NLC.

Meteor Smoke (methane, 558px)

Un gráfico preparado por el profesor James Russell, de la Universidad Hampton, muestra cómo el metano, que es un gas de invernadero, incrementa la cantidad de agua en la parte superior de la atmósfera de la Tierra. Así, el agua se congela alrededor del "humo de los meteoros" y forma las nubes noctilucentes de hielo.

Russell explica: "Cuando el metano se encamina hacia la parte superior de la atmósfera es oxidado por una compleja serie de reacciones y forma vapor de agua. Este vapor de agua adicional queda disponible luego para formar cristales de hielo para las NLC".

Si esta idea es correcta, las nubes noctilucentes son una especie de "canario en una mina de carbón" para uno de los gases de invernadero más importantes.

Y eso, dice Russell, es una razón fundamental para estudiarlas. "Las nubes noctilucentes podrían parecer de otro planeta pero nos están diciendo algo muy importante sobre nuestro propio planeta".

Créditos y Contactos

Funcionaria Responsable de NASA: Ruth Netting
Editor de Producción: Dr. Tony Phillips
Traducción al Español: Ángela Atadía de Borghetti
Editora en Español: Angela Atadía de Borghetti
Formato: Ángela Atadía de Borghetti y Juan C. Toledo

Más información

AIM (Aeronomy of Ice in the Mesosphere, en idioma inglés, o Aeronomía del Hielo en la Mesósfera, en idioma español) –Página de la misión

Extrañas nubes –Science@NASA

Galería fotográfica de nubes noctilucentes en tiempo real –spaceweather.com

Consejos para la observación de NLCs: Mire hacia el Oeste de 30 a 60 minutos después de la puesta del Sol cuando éste se haya escondido de 6o a 16o por debajo del horizonte. Si usted observa mechones luminosos de color azul y blanco que se esparcen en el cielo, probablemente haya detectado una nube noctilucente. A pesar de que las nubes noctilucentes aparecen con más frecuencia en latitudes árticas, han sido vistas en los últimos años en sitios ubicados tan al Sur como: Colorado, Utah y Nebraska. Las NLC están vinculadas con las estaciones, aparecen con más frecuencia a finales de la primavera y en el verano. En el hemisferio norte, la mejor época para observar sería entre mediados de mayo y finales de agosto.

National Aeronautics and Space AdministrationFuncionaria responsable de la NASA: Ruth Netting
Editor de Producción: Dr. Tony Phillips
¡Envíenos sus comentarios!
Última actualización: 26 de agosto de 2012

Ciencias espacialesAstronomíaCiencias de la tierraCiencias físicasMás allá de la coheteríaScience@NASA – Portal en idioma inglés

Anuncios




¿Hacia dónde irá primero Curiosity?

28 08 2012

17 de agosto de 2012: En la actualidad, es noticia del pasado que el vehículo explorador de la NASA, llamado Curiosity (Curiosidad, en idioma español), se encuentra a salvo sobre la superficie del Planeta Rojo, tras realizar un temerario amartizaje que dejó a la nación entera sin aliento. Ahora, los científicos de la misión están ansiosos, esperando que el explorador comience a moverse. Con tan "exquisito" conjunto de ruedas a su disposición, y un camino libre de obstáculos, ¿hacia donde deberían ir primero?

"No tendremos que viajar demasiado lejos para encontrar cosas excitantes", comenta el científico del proyecto, John Grotzinger. "Nos hemos posado en la mejor zona posible dentro del área predeterminada: la parte baja de una zona aluvial".

Where Will Curiosity Go First? (splash)

El nuevo video de ScienceCast explora los lugares a los cuales Curiosity podría dirigirse. [Reproducir el video].

Una zona aluvial es un patrón formado por sedimentos rocosos, polvo y arena, depositados por el flujo de masas de agua (en este caso, quizás un antiguo río marciano). Ya que la vida, tal como la conocemos, requiere de agua líquida, la zona representa un punto estupendo para comenzar la búsqueda de claves de un Marte que tal vez en algún momento exhibió condiciones favorables para la vida.

"Asimismo, la zona aluvial indica que fluyó agua a través de la superficie en el pasado, de modo que nos dirigiremos cuesta abajo, hacia donde el agua podría haberse acumulado. Buscaremos minerales, como sales, que nos podrían indicar los lugares en los cuales el agua ha estado. Es algo así como la búsqueda de un tesoro, sólo que en este caso los minerales desempeñan el papel de las pistas".

Where Will Curiosity Go First? (whereto, 200px)

Esta imagen muestra los sitios que los científicos desean que el vehículo explorador investigue. Primero, Curiosity se desplazará hacia un área apodada Glenelg, en donde se conjugan tres tipos distintos de suelo. El equipo científico pensó que el nombre era apropiado ya que, si Curiosity viaja hacia tal punto, lo visitaría de hecho dos veces (una de ida y otra de vuelta), como la lectura de la palabra Glenelg, que es un palíndromo. Posteriormente, Curiosity se dirigirá hacia la base del Monte Agudo (Mount Sharp, en idioma inglés), en donde un "descanso" en la región de dunas naturales debería permitirle comenzar a escalar las zonas más bajas de la montaña. [Imagen ampliada].

Después de esta escala, agrega Grotzinger, "la marcha será a toda máquina" (a máxima velocidad) hasta la base del Monte Agudo (Mount Sharp, en idioma inglés), una montaña de 5.000 metros de alto que guarda, entre sus antiguas capas y estratos, posibles claves para la vida en el Planeta Rojo.

"Entre nosotros, tendremos que llegar a un acuerdo para no detenernos demasiadas veces durante el camino. El Monte Agudo es la razón por la cual elegimos esta zona para aterrizar, de modo que debemos establecer que llegar allí es una prioridad".

Richard Cook, quien es el director adjunto del programa, describe la tentación de pararse a lo largo del camino: "Será como salir de vacaciones en familia pero, en lugar de la familia, tendremos a 400 científicos deseosos de detenerse y observar cada detalle del paisaje".

Curiosity está dotado de instrumentos específicamente diseñados para la búsqueda de los elementos esenciales para la vida.

Un láser localizado en el mástil de Curiosity es capaz de apuntar hacia rocas que pueden resultar interesantes y vaporizar pequeños fragmentos de ellas, desde una distancia de hasta 7 metros. Los micro-pulsos del láser producen nubes de plasma y los científicos pueden analizar la luz reflejada de tales nubes con el fin de conocer cuál es su composición. El mástil también porta una cámara de alta resolución, llamada Mastcam, la cual ya ha comenzado a observar y a fotografiar los alrededores del vehículo explorador.

Además, el brazo robot del vehículo explorador posee su propio conjunto de instrumentos. El Espectrómetro de Rayos X de Partículas Alfa (Alpha Particle X-Ray Spectrometer, en idioma inglés) medirá la abundancia de elementos químicos en el polvo, así como en el suelo, en las rocas y en las muestras que el explorador recoja. La Cámara para Imágenes con Magnificación en Marte (Mars Hand Lens Imager, en idioma inglés) actúa como si fuera una "lupa de geólogo" que puede tomar sus propias imágenes a color.

Al final, las muestras tomadas serán enviadas a un par de instrumentos de laboratorio ubicados a bordo del vehículo explorador. Uno de tales instrumentos, denominado SAM, que es el acrónimo de "Análisis de Muestras en Marte" (Sample Analysis at Mars, en idioma inglés), explorará el Planeta Rojo "olfateando" el aire, al estilo de un sabueso. El aparato descripto posee rejillas de ventilación que se abren hacia la atmósfera marciana para detectar gases como el metano. SAM también puede "olfatear" los gases liberados por las muestras de suelo o de rocas que calienta en su propio horno.

¿Podrán 400 científicos envueltos en la emoción de las más grandiosas "vacaciones familiares" realmente apresurarse para llegar a destino sin detenerse a "saborear" cada detalle del terreno?

Grotzinger garantiza algo: "En los meses y años venideros, Curiosity nos contará una historia increíble".

Créditos y Contactos

Funcionaria Responsable de NASA: Ruth Netting
Editor de Producción: Dr. Tony Phillips
Traducción al Español: Rodrigo Gamboa Goñi
Editora en Español: Angela Atadía de Borghetti
Formato: Rodrigo Gamboa Goñi

Más información

La primera proeza de Curiosity –Ciencia@NASA

Extraño pero cierto: la grúa aérea del vehículo explorador Curiosity –Ciencia@NASA

Opportunity corre la primera maratón marciana –Ciencia@NASA

Un espectáculo en el cielo, antes del aterrizaje en Marte –Ciencia@NASA

National Aeronautics and Space AdministrationFuncionaria responsable de la NASA: Ruth Netting
Editor de Producción: Dr. Tony Phillips
¡Envíenos sus comentarios!
Última actualización: 26 de agosto de 2012

Ciencias espacialesAstronomíaCiencias de la tierraCiencias físicasMás allá de la coheteríaScience@NASA – Portal en idioma inglés